HS KA Messsystemanalyse   Seite 1 / 1 Einzelwerte obere Spez.-
grenze
untere Spez.-
grenze
obere Grenze
Normal
untere Grenze
Normal
obere Grenze
Messwerte
untere Grenze
Messwerte
FE_WS16_17_Sensorarray Verfahren 1: Cg / Cgk - Studie     -437,784135 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
                    -437,784135 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,784135 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
                    -437,784135 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
Akt. Dat.:  24.04.2017 Bearb.Name: Tim Schanz   Abt./Kst./Prod.: HS KA   Prüfort: Halle 1 kurz -437,784135 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
                    -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
  Prüfmittel   Normal     Merkmal     -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
        -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
Bezeichnung: LeddarM16   Bezeichnung: S16   Bezeichnung: Verfahren 1     -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
Nummer: 1   Nummer: 1   Segment: 16     -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
Auflösung: 1   Istwert: 1000 Nennmaß: 1000 OSG: 1050 -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
Prüfgrnd.: Abnahme   Einheit: mm   Einheit: mm USG: 950 -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
      Offset 35 WinkelFehler 402,7841352 -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
Bemerkung: Beispiel für Verfahren 1 gemäß Leitfaden "Fähigkeitsnachweis von Messsystemen"                 -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841 Klassen Häufigkeit
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841 #DIV/0! 50
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841 Min  -437,8 #DIV/0! 0
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841 Max -437,8 #DIV/0! #NV
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841 Diff 0,0 #DIV/0! #NV
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841 kBreite 0,0 #DIV/0! #NV
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841 #DIV/0! #NV
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841 #NV
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841 Summe :  #NV
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
Einzelwerte                 -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
1 6 11 16 21 26 31 36 41 46 -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 -437,7841 -437,7841352 -437,7841 -437,7841 -437,78414 -437,7841 -437,7841 -437,78414 -437,7841352 -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 -437,7841 -437,7841352 -437,7841 -437,7841 -437,78414 -437,7841 -437,7841 -437,78414 -437,7841352 -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 -437,7841 -437,7841352 -437,7841 -437,7841 -437,78414 -437,7841 -437,7841 -437,78414 -437,7841352 -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 -437,7841 -437,7841352 -437,7841 -437,7841 -437,78414 -437,7841 -437,7841 -437,78414 -437,7841352 -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 -437,7841 -437,7841352 -437,7841 -437,7841 -437,78414 -437,7841 -437,7841 -437,78414 -437,7841352 -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
-437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
Spezifikationswerte Gemessene Werte Statistische Werte   -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
xm 1000,0000 mm      
xg
-437,7841352 mm -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
xm - 0,1*T 990,0000 mm xmin. -437,7841 mm
xg - 2 * sg
-437,7841 mm -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
xm + 0,1*T 1010,0000 mm xmax. -437,7841 mm
xg + 2 * sg
-437,7841 mm -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
0,2 * T 20,0000 mm R 0 mm 4 * sg 0,00000 mm -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
T 100,0000 mm nges. 50 Teile sg 0,000000 mm -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
                    -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
 
Messsystem fähig für T bis -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
Cg  = = ############ ######### ######### Tmin/Cg = 0,0000   -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
  ######### #########   -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
Cgk = = ############ 14,285714 85,71 Tmin/Cgk = -14377,8414   -437,7841 1050,0000 950,0000 1010,0000 990,0000 -437,7841 -437,7841
   
Auflösung = = 1,00% Tmax. Aufl. = 20,0000  
   
   
Hinweise:  1.) Auflösung ist ausreichend ! (Auflösung ist kleiner oder gleich 5% !)  
  2.) Meßgerät ist besser zu zentrieren ! (Cg ist noch kleiner als die Mindestbedingung 1,33 !)
                   
                   
  Beschreibung: m = Master (Normal) g = Gage (Prüfmittel)      
Datum:  ________ Unterschrift:  __________________ Abteilung:  __________________