HS KA Messsystemanalyse   Seite 1 / 1 Einzelwerte obere Spez.-
grenze
untere Spez.-
grenze
obere Grenze
Normal
untere Grenze
Normal
obere Grenze
Messwerte
untere Grenze
Messwerte
FE_WS16_17_Sensorarray Verfahren 1: Cg / Cgk - Studie     1018,21586 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
                    1018,21586 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1018,21586 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
                    1017,21586 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
Akt. Dat.:  25.04.2017 Bearb.Name: Tenscher/Schanz   Abt./Kst./Prod.: HS KA   Prüfort: Langzeit 1017,21586 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
                    1017,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
  Prüfmittel     Normal     Merkmal     1017,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
        1017,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
Bezeichnung: LeddarM16   Bezeichnung: S1   Bezeichnung: Verfahren 1     1017,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
Nummer: 1   Nummer: 1   Segment: 1     1017,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
Auflösung: 1   Istwert: 1000 Nennmaß: 1000 OSG: 1050 1017,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
Prüfgrnd.: Abnahme   Einheit: mm   Einheit: mm USG: 950 1017,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
      Offset 0 WinkelFehler 402,7841352 1017,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
Bemerkung:                   1017,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1017,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1017,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494 Klassen Häufigkeit
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494 1007,4 1
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494 Min  1007,2 1009,6 0
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494 Max 1018,2 1011,8 0
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494 Diff 11,0 1014,0 0
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494 kBreite 2,2 1016,2 33
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494 1018,4 16
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494 0
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494 Summe :  50
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
Einzelwerte                 1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1 6 11 16 21 26 31 36 41 46 1016,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1018,2159 1017,21586 1017,2159 1017,2159 1016,2159 1016,2159 1016,2159 1015,2159 1015,2159 1015,215865 1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1018,2159 1017,21586 1017,2159 1016,2159 1016,2159 1016,2159 1016,2159 1015,2159 1015,2159 1015,215865 1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1018,2159 1017,21586 1017,2159 1016,2159 1016,2159 1016,2159 1016,2159 1015,2159 1015,2159 1015,215865 1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1017,2159 1017,21586 1017,2159 1016,2159 1016,2159 1016,2159 1015,2159 1015,2159 1015,2159 1015,215865 1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1017,2159 1017,21586 1017,2159 1016,2159 1016,2159 1016,2159 1015,2159 1015,2159 1015,2159 1007,215865 1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
Spezifikationswerte Gemessene Werte Statistische Werte   1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
xm 1000,0000 mm      
xg
1016,095865 mm 1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
xm - 0,1*T 990,0000 mm xmin. 1007,2159 mm
xg - 2 * sg
1012,9494 mm 1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
xm + 0,1*T 1010,0000 mm xmax. 1018,2159 mm
xg + 2 * sg
1019,2424 mm 1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
0,2 * T 20,0000 mm R 11 mm 4 * sg 6,29298 mm 1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
T 100,0000 mm nges. 50 Teile sg 1,573246 mm 1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
                    1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
 
Messsystem fähig für T bis 1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
Cg  = = 3,18 113,51 -13,51 Tmin/Cg = 41,8483   1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
  -69,19 169,19   1015,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
Cgk = = -1,94 14,285714 85,71 Tmin/Cgk = 202,8070   1007,2159 1050,0000 950,0000 1010,0000 990,0000 1019,2424 1012,9494
   
Auflösung = = 1,00% Tmax. Aufl. = 20,0000  
   
   
Hinweise:  1.) Auflösung ist ausreichend ! (Auflösung ist kleiner oder gleich 5% !)  
  2.) Meßgerät ist besser zu zentrieren ! (Cg ist noch kleiner als die Mindestbedingung 1,33 !)
                   
                   
  Beschreibung: m = Master (Normal) g = Gage (Prüfmittel)      
Datum:  ________ Unterschrift:  __________________ Abteilung:  __________________