HS KA Messsystemanalyse   Seite 1 / 1 Einzelwerte obere Spez.-
grenze
untere Spez.-
grenze
obere Grenze
Normal
untere Grenze
Normal
obere Grenze
Messwerte
untere Grenze
Messwerte
FE_WS16_17_Sensorarray Verfahren 1: Cg / Cgk - Studie     1040,21586 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
                    1040,21586 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,21586 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
                    1040,21586 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
Akt. Dat.:  25.04.2017 Bearb.Name: Tim Schanz   Abt./Kst./Prod.: HS KA   Prüfort: Langzeit 1040,21586 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
                    1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
  Prüfmittel   Normal     Merkmal     1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
        1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
Bezeichnung: LeddarM16   Bezeichnung: S16   Bezeichnung: Verfahren 1     1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
Nummer: 1   Nummer: 1   Segment: 16     1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
Auflösung: 1   Istwert: 1000 Nennmaß: 1000 OSG: 1050 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
Prüfgrnd.: Abnahme   Einheit: mm   Einheit: mm USG: 950 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
      Offset 0 WinkelFehler 402,7841352 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
Bemerkung:                   1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017 Klassen Häufigkeit
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017 1036,2 1
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017 Min  1035,2 1037,2 0
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017 Max 1040,2 1038,2 0
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017 Diff 5,0 1039,2 0
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017 kBreite 1,0 1040,2 49
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017 1041,2 0
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017 0
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017 Summe :  50
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
Einzelwerte                 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1 6 11 16 21 26 31 36 41 46 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1040,2159 1040,215865 1040,2159 1040,2159 1040,2159 1040,2159 1040,2159 1040,21586 1040,215865 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1040,2159 1040,215865 1040,2159 1040,2159 1040,2159 1040,2159 1040,2159 1040,21586 1040,215865 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1040,2159 1040,215865 1040,2159 1040,2159 1040,2159 1040,2159 1040,2159 1040,21586 1040,215865 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1040,2159 1040,215865 1040,2159 1040,2159 1040,2159 1040,2159 1040,2159 1040,21586 1040,215865 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1040,2159 1040,215865 1040,2159 1040,2159 1040,2159 1040,2159 1040,2159 1040,21586 1035,215865 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
Spezifikationswerte Gemessene Werte Statistische Werte   1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
xm 1000,0000 mm      
xg
1040,115865 mm 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
xm - 0,1*T 990,0000 mm xmin. 1035,2159 mm
xg - 2 * sg
1038,7017 mm 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
xm + 0,1*T 1010,0000 mm xmax. 1040,2159 mm
xg + 2 * sg
1041,5301 mm 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
0,2 * T 20,0000 mm R 5 mm 4 * sg 2,82843 mm 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
T 100,0000 mm nges. 50 Teile sg 0,707107 mm 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
                    1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
 
Messsystem fähig für T bis 1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
Cg  = = 7,07 252,54 -152,54 Tmin/Cg = 18,8090   1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
  -760,54 860,54   1040,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
Cgk = = -21,30 14,285714 85,71 Tmin/Cgk = 419,9677   1035,2159 1050,0000 950,0000 1010,0000 990,0000 1041,5301 1038,7017
   
Auflösung = = 1,00% Tmax. Aufl. = 20,0000  
   
   
Hinweise:  1.) Auflösung ist ausreichend ! (Auflösung ist kleiner oder gleich 5% !)  
  2.) Meßgerät ist besser zu zentrieren ! (Cg ist noch kleiner als die Mindestbedingung 1,33 !)
                   
                   
  Beschreibung: m = Master (Normal) g = Gage (Prüfmittel)      
Datum:  ________ Unterschrift:  __________________ Abteilung:  __________________